SMD861D Application Note

Shamrock Micro Devices Corp.

www.shamrock.com.tw No.19, Ln.364, Huacheng Rd., Shinjuang Dist., New Taipei City 242, Taiwan (T)+886-2-2277-7295 ext 6200 (F)+886-2-29906724

Advantages and Disadvantages of Peak Current Mode

The Peak Current Mode of Buck converter used in SMD802

The advantages of Peak current mode:

- •Simple open loop buck circuit
- Easy and Low cost design

The disadvantages of Peak current mode:

- Constant current accuracy
- Line and Load regulation problems

Peak Current Mode Problems

The average inductor current suffers poor load and line regulation.

www.shamrock.com.tw

Average Current Mode

SMD861D overcomes the drawbacks of Peak Current Mode.

- •Regulates the average inductor current directly
- •Accuracy within ± 3%

www.shamrock.com.tw

- ●Gate duty cycle D : 0.1 < D < 0.75
- •Auto-zero circuit at CS pin cancels the propagation and offset errors

Linear Dimming Characterictics

Short Circuit Protection

When a short circuit is applied at the output of the buck converter, the inductor current will keep rising every switching cycle.

The second threshold $I_{LIM} = 0.44 V/R_{CS}$ was designed to protect the stair-case saturation. When this threshold is reached, the GATE Output is disabled for 400µs, thus the inductor current ramp down to a safe level.

Fixed Freq. Mode vs Constant-Off Time Mode

Product	SMD802B		SMD861D	
Mode	Frequency Equation	Rosc wiring	Frequency Equation	Rosc wiring
Fixed Frequency Mode	t _{osc} = 40pF x R _{osc} + 0.88µs	R _{osc} wired to GND	NA	NA
Constant-Off Time Mode	t _{OFF} = 40pF x R _{OSC} + 0.88µs	R _{osc} wired to GATE	t _{OFF} = 40pF x R _{OSC} + 0.3μs	R _{osc} wired to GND

7

SMD802B constant-off time mode

SMD861D constant-off time mode, SMD802B fixed frequency mode

Maximum Duty Cycle

Duty Cycle =
$$\frac{t_{ON}}{t_{OSC}}$$
 = $\frac{t_{ON}}{t_{OFF} + t_{ON}}$

	SMD802B	SMD861D
Fixed Frequency Mode	50%	NA
Constant-Off Time Mode	90%	75%

The Regulation of the average inductor current of SMD861D is limited to

Dmax ≦ 0.75,

When the duty cycle is exceeded, the functionality of SMD861D will approach SMD802B, the LED current will drop.

SMD802B vs SMD861D

Feature	SMD802B	SMD861D	
Fixed Frequency Mode	Resistor from ROSC to GND	NA	
Fixed-Off Time Mode	Resistor from ROSC to GATE	Resistor from ROSC to GND	
Current Threshold	250mV or V_{LD}	272mV or $V_{LD}/5.5$	
Current Threshold Accuracy	10%	Auto-zero	
LED Current Accuracy	Depends on inductance and switching frequency variation	Independent of inductance and switching frequency variation	
LED Current Regulation	Poor LED current depends on input and output voltage	Good	
LD Input Range	0 to 250mV	0.2V(0.15V) to 1.5V	
Residual LED Current at V _{LD} =GND	5%(typ.) of I _{LED} @ V _{LD} =250mV	0A	
Current Limit Threshold	none	440mV	
Hiccup Time	NA	400µS	
Minimum On-Time	465ns	1000ns	
Maximum Duty Cycle	0.5(fixed freq.), 0.9(fixed T_{OFF})	0.75	

9